Главная · Греция · Перископные комплексы подводных лодок. Перископ подводной лодки Перископ атаки подводной лодки серии 7

Перископные комплексы подводных лодок. Перископ подводной лодки Перископ атаки подводной лодки серии 7

Изобретение относится к оптическому приборостроению, к устройствам оптического наведения и прицеливания, а именно к перископам подводных лодок. Перископ подводной лодки содержит корпус-тумбу, зафиксированную на прочном корпусе судна, внутри которой герметично установлена труба перископа с возможностью вертикального перемещения при помощи подъемного механизма, которая соединяет головную часть перископа и бугель, состоящий из двух частей, связанных между собой. Одна из частей бугеля соединена с корпусом-тумбой с возможностью вертикального перемещения, а вторая имеет возможность вращения относительно вертикальной оси перископа и прикреплена к трубе перископа. Перископ выполнен не проникающим в прочный корпус судна. Подъемный механизм расположен внутри корпуса-тумбы и состоит из электродвигателя с редуктором и двух вертикальных ходовых винтов. Верхние и нижние концы винтов соединены соответственно с верхней частью и основанием корпуса-тумбы с возможностью вращения вокруг вертикальной оси, параллельной оси перископа. С первой невращающейся частью бугеля каждый ходовой винт кинематически связан при помощи плавающей гайки. Достигается повышение надежности и удобства эксплуатации перископа. 2 з.п.ф-лы, 1 ил.

Изобретение относится к оптическому приборостроению, к устройствам оптического наведения и прицеливания, а именно к перископам подводных лодок. Перископы бывают как проникающие внутрь корпуса лодки, так и не проникающие. Не проникающие внутрь корпуса лодки перископы имеют преимущество, так как они без особых осложнений сохраняют герметичность наблюдательного поста подлодки и обеспечивают более удобное место для размещения оператора. При таком размещении оператор обеспечен зафиксированным монитором-окуляром, который, хотя и усложняет оптическую систему перископа, но позволяет отслеживать цель, не поворачивая монитор-окуляр вокруг своей оси. Оптический канал в таких перископах заменен на оптико-электронные каналы, использующие электрические сигналы, передаваемые по кабелю, что делает принципиально возможным размещение перископа не только над центральным постом, что является обязательным для традиционных перископов, но и в других местах на прочном корпусе. Перископы подобного типа самостоятельно выдвигаются в рабочее положение. Перископы подобного типа выпускаются всеми ведущими фирмами мира в области перископостроения, например, Kollmorgen Corp и Hughes Aircraft Со (США), Sagem SA (Франция), Pilkington Optronics (Великобритания). Riva Calzony (Италия), Carl Zeiss (Германия) . Проникающие внутрь корпуса судна перископы заставляют оператора двигаться вслед за окуляром и требуют больше места внутри корпуса подлодки. Современные проникающие внутрь корпуса лодки перископы не требует больше от оператора приспосабливаться к неудобным низким позициям, как это было при размещении окулярной части в основании трубы перископа. Эта проблема решилась при помощи монтирования перископа внутри корпуса-трубы, прикрепленного к жесткому корпусу судна. Окуляр сохраняет постоянную позицию вне зависимости от положения головной части и трубы перископа, которые двигаются вверх и вниз внутри корпуса-тумбы при помощи подшипников скольжения и подъемного механизма . Наиболее близким по технической сущности к предлагаемой конструкции является проникающий в прочный корпус лодки перископ по , содержащий корпус-тумбу, закрепленную на прочном корпусе судна, трубу, соединяющую головную и окулярную части, которая содержит оптику и перемещается в вертикальном направлении под воздействием подъемного механизма благодаря подшипникам, установленным в верхней части корпуса подлодки и верхней части корпуса-тумбы, и оборудована в нижней части трубы - бугеле подвесным механизмом горизонтального наведения, включающего невращающуюся часть и двигатель. Невращающаяся часть механизма горизонтального наведения соединена с трубой при помощи роликового упорного подшипника, который позволяет трубе вращаться вокруг вертикальной оси под воздействием двигателя. Перископ содержит также неподвижный относительно корпуса подлодки окулярный блок. Прототип обладает следующими недостатками:

1. Сложность в обеспечении герметичности наблюдательного поста подлодки, так как труба перископа проникает в прочный корпус судна. 2. Невозможность поворота по курсовому углу при опущенном положении трубы и при ее неполном подъеме, что осложняет эксплуатацию прибора. Задача изобретения заключается в повышении надежности и удобства эксплуатации перископа. Поставленная задача осуществляется в предлагаемом перископе подводной лодки, содержащем корпус-тумбу, зафиксированную на прочном корпусе судна, внутри которого герметично установлена труба перископа с возможностью вертикального перемещения при помощи подъемного механизма, которая соединяет головную часть перископа и бугель. Бугель состоит из двух частей, связанных между собой посредством подшипника, при этом одна из частей бугеля соединена с корпусом-тумбой с возможностью вертикального перемещения, а вторая имеет возможность вращения относительно вертикальной оси перископа и прикреплена к трубе перископа. Предлагаемый перископ отличается от прототипа тем, что перископ выполнен не проникающим в прочный корпус судна. Подъемный механизм расположен внутри корпуса-тумбы и состоит из электродвигателя с редуктором, и по меньшей мере двух вертикальных ходовых винтов. Верхние и нижние концы винтов соединены соответственно с верхней частью и основанием корпуса-тумбы с возможностью вращения вокруг вертикальной оси параллельной оси перископа, а с первой, невращающейся частью бугеля каждый ходовой винт кинематически связан при помощи плавающей гайки. Предлагаются варианты перископа, отличающиеся тем, что верхние и нижние концы вертикальных ходовых винтов соединены соответственно с верхней частью и основанием корпуса-тумбы при помощи подшипников, а плавающие гайки имеют возможность произвольного перемещения в параллельных горизонтальных плоскостях в пределах 1-1,5 мм. Электродвигатель и редуктор подъемного механизма зафиксированы на основании корпуса-тумбы. Сущность изобретения заключается в повышении надежности и удобства эксплуатации перископа путем осуществления возможности подъема и опускания трубы перископа в любом положении по курсовому углу, а также в осуществлении возможности предварительного наведения перископа на цель в его опущенном положении. Это осуществляется путем создания точки опоры для поворота трубы по курсовому углу при ее опущенном положении и при ее неполном подъеме, которая создается при помощи соединения невращающейся части бугеля с ходовыми вертикальными винтами, верхние и нижние концы которых зафиксированы на корпусе-тумбе. Сущность изобретения пояснена чертежом. На чертеже показана конструкция предлагаемого устройства. Как видно из чертежа перископ подводной лодки содержит корпус-тумбу 1, зафиксированную на прочном корпусе судна 2, внутри которой установлена труба 3 посредством опор, расположенных в верхней части корпуса-тумбы и подшипников скольжения 4. Соединения выполнены герметичными посредством грязевых и герметизирующих манжет 5. Труба 3 соединяет головную часть 6 и бугель перископа 7 и не проникает в прочный корпус лодки 2. Бугель 7 состоит из двух частей, одна из которых 8 соединена с корпусом-тумбой с возможностью вертикального перемещения бугеля, а вторая 9 дополнительно имеет возможность вращения относительно вертикальной оси перископа при помощи механизма горизонтального наведения и жестко соединена с трубой перископа 3. Части бугеля соединены между собой посредством подшипника 10. Электродвигатель с редуктором 11 механизма горизонтального наведения прикреплен к невращающейся части бугеля. Подъемный механизм состоит из электродвигателя с редуктором 12, которые зафиксированы на основании корпуса-тумбы 1 и вертикальных ходовых винтов 13. Верхние и нижние концы винтов соединены с верхней частью корпуса-тумбы и его основанием соответственно при помощи подшипников 14. Винты соединены с невращающейся частью бугеля 8 с возможностью перемещения в параллельных горизонтальных плоскостях в пределах допустимого люфта (примерно 1 мм), при помощи плавающей гайки 15. Люфт вызван погрешностью изготовления ходовых винтов. Устройство работает следующим образом. Труба перископа 3 под воздействием электродвигателя подъемного механизма 12 двигается в вертикальном направлении при помощи вертикальных ходовых винтов 13, по которым скользит плавающая гайка 15. Труба перископа 3 может разворачиваться по курсовому углу (вокруг вертикальной оси перископа) в любом положении по ходу движения в вертикальном направлении, так как существует точка опоры, образованная соединением невращающейся части бугеля 8 с ходовыми винтами 13 посредством плавающей гайки 15. Литература

1. Справочник "Janes" (1998-1997 год)-"Sumbarint weapont control syptems. Optronic masts"). 2. Патент Франции N 2488414 (прототип).

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Перископ подводной лодки, содержащий корпус-тумбу, зафиксированную на прочном корпусе судна, внутри которой герметично установлена труба перископа с возможностью вертикального перемещения при помощи подъемного механизма, которая соединяет головную часть перископа и бугель, состоящий из двух частей, связанных между собой посредством подшипника, при этом одна из частей бугеля соединена с корпусом-тумбой с возможностью вертикального перемещения, а вторая имеет возможность вращения относительно вертикальной оси перископа и прикреплена к трубе перископа, отличающийся тем, что перископ выполнен не проникающим в прочный корпус судна, подъемный механизм расположен внутри корпуса-тумбы и состоит из электродвигателя с редуктором и по меньшей мере двух вертикальных ходовых винтов, верхние и нижние концы которых соединены соответственно с верхней частью и основанием корпуса-тумбы с возможностью вращения вокруг вертикальной оси, параллельной оси перископа, а с первой, невращающейся частью бугеля каждый ходовой винт кинематически связан при помощи плавающей гайки. 2. Перископ по п.1, отличающийся тем, что верхние и нижние концы вертикальных ходовых винтов соединены соответственно с верхней частью и основанием корпуса-тумбы при помощи подшипников, а плавающие гайки имеют возможность произвольного перемещения в параллельных горизонтальных плоскостях в пределах 1-1,5 мм. 3. Перископ по п.1 или 2, отличающийся тем, что электродвигатель и редуктор подъемного механизма зафиксированы на основании корпуса-тумбы.

Название Фирма изготовитель Техническая характеристика Где установлен

PIVAIR(SPS), PIVAIR(SPS) К"-для АПЛ и ПЛАРБ SAGEM Оптико-электронный и оптический перископ, на котором также размешена антенна системы РПД и ИК системы. Кроме обычной бинокулярной оптики на мачте расположен секстант, 35мм кинокамера и ИК монитор. Оптическое увеличение 1,5х или 6х(12х в опционном режиме). Угол обзора 26,9, 4,5 град при угле подъема +807-10 град. Мачтовое устройство стабилизировано в 2-х плоскостях. Угол обзора осматривающей носовые и кормовые углы ИК системы 3x6 град обеспечивает быстрый обзор (при 1об/сек, или круговой поиск). Диаметр головки системы обнаружения 320мм, трубы 200мм (для SPS-S - 250 мм). Для перископа атаки - 140 мм и 180 мм соответственно. Casablanca, Emer-ande, Rubis, Saphir, Le Triomphant (версия М12/ SPS-S). L Inflexible и Le Re-doutable (все - Франция)

SMS SAGEM Экспортный вариант непроникающего внутрь ГК перископа, созданный на основе PIVAIR (SPS). Является модис)эи-кацией мачты радиоэлектронного противодействия. Испытан на Psyche (Франция, ПЛ типа Daphne). Gotland (Швеция), Kobben (Норвегия) для АПЛ и ПЛАРБ. Закуплен для испанских ПЛ типа Agosta

IMS-1 SAGEM Непроникающий внутрь ПК перископ только с ИК системой обнаружения (стабилизирована в двух плоскостях, угол подъема +30А9 град, угол обзора 5,4 град при поиске или 7x5,4 град при распознавании, элемент - IRIS CCD). Скорость при круговом обзоре - 15-20 об-мин. Скорость движения ПЛ до 12 уз. Размеры блока системы обнаружения: 208 мм диаметр, 180 кг. Диаметр мачты -235 мм. Narhvalen (Дания)

OMS SAGEM Гиростабилизированная по одной или двум осям система с ТВ камерой (угол подъема +50/-20 град, угол обзора 32 и 4 град), ИК системой (угол подъема +50А20 град, угол обзора 9 град) и стабилизированной навигационной РЛС (дальность 4-32 км, точность 2,5 град). Диаметр блока системы обнаружения 370 мм, вес 450 кг. ПЛАРБ типа Le Triomphant (Франция)

ST5 SFIM/SOPELEM Перископ атаки. Оптимальное увеличение 1,5х и 6х (угол обзора соответственно 30 и 7град). Углы подъема +30/-10 град. Всего по 1985 год выпушено 40 ед. ДПЛ Agosfa АПЛ Amethyste (Франция)

Модель J SFILM/SOPELEM Поисковый перископ, в его состав входят антенна РЛС, антенна АРА-4 и всенаправленные антенны электронной разведки. Увеличение 1,5х и 6х (углы обзора соответственно 20 и 5 гр^д) Agosta

Модель К SFIM/SOPELEM Установлен световой усилитель, при этом увеличение 5х, угол обзора 10 град, углы подъема +30/-10 град. При дневном режиме увеличение 1,5х и 6х (углы обзора соответст-венно 36 и 9 град) АПЛ типа Amethyste (Франция)

Модель L SFIM/SOPELEM Имеет те-же характеристики и устройства, что и модель К, но без секстанта, т.к. ПЛАРБ имеют специальный астроперископ MRA-2. ПЛАРБ ВМС Франции

М41 и ST3 (модернизированный) 5FIM/ SOPELEM (Франция) и Eloptro (Южная Африка) Оптические перископы атаки (ST3) и поиска (М41) были модернизированы на ПЛ ВМС Южной Африки: заменены оптический элементы, улучшены оптический характеристики системы, в том числе в условиях слабой освещенности, установлены видеодальномеры и ТВ-системы, работающие в условиях слабой освещенности, сигнал от которой подается на консоли операторов ЦП. ДПЛ типа Spear (типа Daphne) ВМС Южной Африки

Германия

STASC/3 Carl Zeiss Первый послевоенный перископ фирмы дзойного назначения - поиска и атаки. Оптическое увеличение 1,5х и 5,6х, углы обзора 40x30 град и 10x7,5 град. Углы подъема +90/-15 град. Всего было выпущено 30 ед. ДПЛ типа Narhvalen (тип 207, Дания), Kobben (тип 207, Норвегия), тип 205 (Германия), сейчас снят с вооружения.

ASC17/NavS (SER012) Carl Zeiss AS С17 - перископ атаки с фиксированными окулярами (с индикаторами пеленга в с}хжальной плоскости объектива) NavS - навигационный перископ, однотипный с AS С17, устанавливается на мачте РДП. Оптическое увеличение 1,5х и 6,0х, углы обзора 38x28 град и 9,7x5 град. Углы подъема +90/-15 град. (SERO - сокращение от ein Sehrohr- перископ (нем.)) ДПЛ типа 206 (Индонезия), типа 206А (Германия), типа 540 (Израиль)

Германия

ASC189 BS18 Carl Zeiss AS C18 и BS 18 соответственно перископы атаки и поиска (В - сокращение от eine Beobachtung - наблюдение (нем.)) Оптическое увеличение 1,5х и б,0х, углы обзора 40x30 град и 9,5x7,5 град соответственно. Углы подъема +75/-15 град. Диаметр трубы 52-180 мм и 60-180мм. ДПЛ типа 209 (Аргентина, Колумбия, Эквадор, Греция (только тип 209/1100)), Перу (Islay и Arica), Турция, Венесуэла (Sabalo).

AS С40, BS 40 (SERO 40) Carl Zeiss AS С40 и BS 40 имеют электрическую систему управления. Управление функциями (увеличение и т.п.) - кнопочное, электрическое. Выдаются данные по истинному и относительному пеленгу, углу подъема, высоте цели и дистанции до нее, данным радиоразведки. Увеличение 1,5х и 6,0х, при углах обзора 36*28град и 8x6,5 град, по углам подъема призмы +757-15 град. При поднятой антенне - +60/-15 град. Устанавливаются: лазерный дальномер, ТВ-камера, ИК шкала обзора носовых углов, работающая в диапазоне amp;-12 микрон. Имеется версия 40 Stab, стабилизированная по горизонту с использованием 2-х осевого гороскопа и 16-битового микропроцессора. ДПЛ типа 209/1200 (Греция), типа 209 (Индонезия), типа 209 (Перу, последние ПЛ серии), типа 209 (чили, Корея), типа 209/1400 (Венесуэла), Тайвань (Hai Lung)

SERO 14, SER015 Carl Zeiss SERO 14- перископ поиска, SERO 15- перископ атаки. Оптическое увеличение 1,5х и 6,0х при углах обзора 36л28 град и 8x6,5 град соответственно. Углы подъема +75/-15 град для SER014 и +60/-15 град для SER015. В состав SERO 14 входят также: - ИК система обнаружения (8-12 микрон) с американским 180-элементным модульным детектором, обеспечивает носовые углы обзора 14,2x10,6 град и 4x3 град; - дополнительный режим увеличения 12 с углами обзора 4x3 град и режим zoom. SERO 15 имеет оптический и лазерный дальномеры, а в модификации SERO 15 Mod IR еще и ИК камеру, работающую в диапазоне 3-5 микрон. Диаметры - больше, чем на серии 40 Stab. ПЛ типа 212 (Германия), ДПЛ Ula типа 210 (Норвегия)

OMS -100 Carl Zeiss Оптронная мачта с ИК и ТВ-системами наблюдения. Данные передаются на монитор в посту управления. На мачте могут быть установлены лазерный дальномер и антенна РЛС, либо только антенна РЛС. В комплект входит также антенна системы GPS и радиоразведки. ИК система работает в диапазоне 7,5-10,5 микрон (используется цифровой детектор) и имеет углы обзора 12,4x9,3 град либо 4,1x3,1 град. Углы подъема +60/-15 град. ТВ-камера (с 3 микропроцессорами) имеет углы обзора 30x22,7 град либо 3,5x2,6 град (в режиме zoom). Диаметр оптронного контейнера 220 мм, вес - 280 кг. Аппаратура управления и представления данных весит 300 кг, а мачтовое устройство - 2500 кг. Прошла испытания на ПЛ U-21 типа 206 в 1994 г.

Великобритания

CH 099 Великобритания, фирма Barr amp;Stroud (подразделение фирмы Pilkington Optronics) СН 099 - перископ атаки. Может быть оснащен ИК прибором ночного видения или высокочувствительной ТВ-камерой, но не обоими приборами вместе из-за недостатка места. Изображение формируется на экране ЭЛТ. Данные о пеленге и дистанции отображаются непосредственно в окуляре и автоматически передаются в ЦП и в систему управления огнем. Оптическое увеличение 1,5х и 6,0х. Диаметр мачты - 190мм. -

CK059 Barr amp;Stroud (подразделение фирмы Pilkington Optronics) Перископ поиска, подобен перископу атаки СН099. Диаметр мачты - 190 мм. Имеет окно больших размеров, поэтому может быть оснащен дополнительно светоусилителем с трубкой Mullard, что позволяет использовать его в ночное время. На мачту может быть установлена всенаправленная антенна радиотехнической разведки. При применении приборов ИК наблюдения и ТВ-камерой перископ может быть оборудован пультом дистанционного управления, скорость в ращения датчика может изменяться от 0 до 12 об/мин, вертикальный наклон линии визирования в пределах от -10 град до +35 град. Оператор может также регулировать масштаб увеличения, фокусировку всех устройств, управлять передачей данных ит.п. -

Великобритания

СК034/СН084 Barr amp;Stroud (подразделение фирмы Pilkington Optronics) 254-миллиметровые перископы поиска (СК 034) и атаки (СН 084). Диаметр верхней части перископа атаки - 70 мм. Оба перископа квазибинокулярные. Перископ СК 034 имеет три значения увеличения: 1,5х, 6х, и 12х. Углы обзора соответственно 24, 12,6 и 3 град. Установлен секстант типа AHPS4. Перископ СН 084 имеет значения увеличения 1,5х и 6х при углах обзора 32 и 6 град. Оснащен светоусилитилем. ИК системой наблюдения и дальномером, автоматически вычисляющим дистанцию до цели. АПЛ типа Trafalgar (Великобритания), ДПЛ типа Victoria (Uphoulder) (Канада)

СК043/СН093 Barr amp;Stroud (подразделение фирмы Pilkington Optronics) Перископ поиска СК 043 оснащен светоусилителем и ТВ-камерой, работающей при низкой освещенности. Оба канала обнаружения стабилизированы. Диаметр перископа поиска СК 043 - 254 мм, перископа атаки СН 093 - 190 мм. ДПЛ Collins (Австралия)

СК 040 Barr amp;Stroud (подразделение фирмы Pilkington Optronics) Комбинированный (поиска и атаки) перископ для малых ПЛ. Оборудован светоусилителем и дальномером. Имеет монокулярный объектив и стабилизирован по горизонту. Из-за массогабаритных ограничений отсутствуют дополнительные системы обнаружения и антенны навигационных систем, а также не выводятся показания истинного пеленга, имеется только относительная шкала координат. Окошко и объектив имеют обогрев. СМПЛ

СМОЮ Barr amp;Stroud (подразделение фирмы Rlkington Optronics) СМОЮ - это разработанная в порядке коммерческой инициативы оптоэлектронная мачта, в состав которой входят рабочая станция с двумя дисплеями фирмы Ferranti Thomson и мачтовое устройство фирмы McTaggert Scott. Рабочая станция, используя образы, полученные от различных систем обнаружения, создает синтезированный образ цели, который и передается в АСБУ. Все датчи‹и помешены в обтекаемый герметичный контейнер, а система обработки сигналов находится в ПК. В состав систем обнаружения входит ИК камера, монохромная камера с высокой разрешающей способностью, система радиоразведки и GPS. Углы обзора 3, 6, и 24 град, а углы подъема - +60/-15 град. Сейчас диаметр мачты 340 мм, но он может быть уменьшен до240 мм, при условии уменьшения угла подъема до 50 град. Мачта прошла морские испытания в 1996 г. SSN 20 Astute (Великобритания)


Type8L mod (T),Type15L mod(T) Sperry Marine Комбинация перископов для ПЛАРБ типа Ohio Type 8L установлена по правому борту ОВУ, a Type 15L - по левому борту. Type 8L несет также антенну РЛС определения дистанции, а 151-станцию PTPWLR-10. Оптическое увеличение соответственно 1,5х и 6х при углах подъема +60/-10 град. Углы обзора 32 и 8 град. Могут оснащаться ТВ - и фотокамерами. Длина перископа око-ло14м. SSBN тип Ohio (США), SSN 21 Seawolf (США) (перископы Type 8J Mod 3)

Type 18 Sperry Marine Поисковый перископ, несущий также антенну обнаружения сигналов РЛС, имеет гиростабилизированную оптическую систему, светоусилитель и ТВ-камеру для низких уровней освещенности. Модис|эикация Туре 18В имеет общую длину около 12,0 м, a Type 18D-12,6 м. Оптическое увеличение 1,5х, 6х, 12х, 24х, при углах обзора 32, 8, 4 и 2 град. Ограничения углов подъема +60/-10 град. Функциональные режимы перископа: день, ночь, оптика, ТВ, IMC (image motion compensation - компенсация движения образа цели), фотокамера и гиростабилизация.

Type 22 (NESSI^ - Оптронная система 2-го поколения для АПЛ типа Los Angeles, включающая ИК систему, работающую в диапазоне 3-5 микрон, ТВ-систему, работающую при низких уровнях освещенности, и антенну спутниковой навигации. Перископы Types 19, 20 и 21 - это различные типы оптронных мачт, данные о которых отсутствуют. ПЛА типа Los Angeles (США)

Model 76 Kollmorgen Бинокулярный, со стабилизированной оптикой, экспортный 7,5-дюймовый перископ фирмы Kollmorgen в версиях поиска и атаки. Оптическое увеличение 1,5х и 6х при углах обзора 32 и 8 град и ограничениях по углам подъема +74/-10 град для перископа атаки и +60А10 град для поискового перископа, для поискового перископа. На перископе поиска устанавливаются секстант, антенны связи, спутниковой навигации и РЭБ. Светоусилитель установлен непосредственно на мачте, а ИК система SPRITE - между оптической головкой и антенной РЭБ (угол обзора 12/4 град, при ХН 0,2 мра^о). Перископы, установленные на ПЛ различных флотов, имеют индивидуальные номера моделей. ДПЛ тип TR-1700 (Аргентина), типа 209/1400 (Бразилия), типа 209/1500 (Индия), Dolphin (Израиль), Salvatore Pe/os/(Model 767322c радиолокационным дальномером, Италия), Primo Langobardo (Model767323 с лазерным дальномером) Nazario Sauro вторые 2 ПЛ (Model 76/324), Walrus (Нидерланды), Nacken (Швеция), 209/1200 и 209/1400 Model 76/374 Турция)

Универсальная модульная мачта / Model 86/Model 90 Kollmorgen (США) Model 86 - оптронная мачта, объединяющая датчик ИКвидения, высокочувствительную ТВ-камеру и средства радиотехнического обеспечения. Для передачи информации используется волоконно-оптическая линия, управление осуществляется с помощью ЭВМ, производящей общий анализ угрозы, и с пульта управления. К числу дополнительных возможностей относятся цветной ТВ-канал, навигационная аппаратура SATNAV и обработка видеосигнала. Model 90 - это оптронная адаптация к обычному 190-мм перископу, совмещающая оптический канал с увеличением 1,5х, 6х, 12х, 18х при ограничении углов подъема +74/-10 град, ИК приемнике ограничением углов подъема +557-10 град, ТВ-камеру, лазерный дальномер, систему РЭБ и приемник‹GPS. Model 86 и 90 представляют собой коммерческие версии так называемой универсальной модульной мачты, в состав которой входит optronica фирмы Kollmorgen (США), дисплеи фирмы Loral Librascope (США), 2-х ступенчатая мачта фирмы Riva Calzoni (Италия), оконечное устройство обработки сигналов фирмы Alenia (Италия) и универсальные консоли MFGIES или CTI. Модио›икациями Model 90 являются ТОМ (тактическая оптронная мачта), OMS (оптронное мачтовое устройство обнаружения) и СОМ (компактная оптронная мачта). Последняя предназначена для СМПЛ. В начале 1994 г. Model 90 была поставлена на экспорт заказчику в Японию. АПЛ типов Seawolf и Virgnia


* По данным

The Naval Institute guide to World Naval Weapon Systems 1997-1998, pp. 638-644.

А теперь четвертая, самая большая и главная, фотозарисовка. Подводная лодка Д-2.

Поход на подводную лодку Д-2, стоящую у ковша Галерной гавани, несомненно явился кульминацией субботнего Большого Морского дня. Очень интересный объект: любителям флота, морей-океанов, подводных лодок и военной истории настоятельно рекомендую. Также поучительно и правильно туда идти с детишками лет эдак от 7 и больше.
Лет 5 назад я посетил подводную лодку С-56 во Владивостоке, стоящую перед зданием штаба Тихоокеанского флота. Но там половину лодки переделали в музей, что, конечно, заметно снизило впечатление. А вот наша, ленинградская, лодка оставлена с начинкой целиком, «как есть» - то есть все отсеки (лишь в нижних частях отсеков, где размещались балластные цистерны, кое-где сделаны экспозиции). А к ней аккуратно пристроено здание музея, где и размещены основные исторические экспозиции, а также выставка детского рисунка на тему подлодок (потрясающе само по себе! я от рисунков просто тащился!) и кое-какие картины.

Экскурсии проводятся каждый час, но по какой-то непонятной системе: то есть легко можно и не попасть в очередную экскурсию. Мы, придя около 12.20 дня, вписались на 13.00; однако, когда мы уже вышли, около 14.00, пришедших страждущих почему-то обламывали, говоря, что «уже нет возможности». Почему, я так и не понял.


Режим внутри неплохой, мне понравился. То есть можно всегда оторваться от экскурсии, и пойти по отсекам самому, почти всё можно смотреть, трогать (хотя и говорят, что не надо). Перископ вертится по оси и… реально действует – то есть оптика работает и можно смотреть, что снаружи! Можно полежать на койке, покрутить штурвал, заглянуть в торпедный аппарат. Сохранность и качество реставрации механизмов неплохое, думаю, что лучше, чем во владивостокской эС-ке. Экскурсия идёт с конца, с VII отсека, к I отсеку, носовому. В рубку хода нет (очень жаль!).

Сама лодка является одной из первых советской постройки (1931 год). При закладке получила имя "Народоволец", а в 1934 году была переименована в Д-2.
Как я понял, эта серия лодок была первой, которую молодой Советский Союз себе позволил после длительного периода слабости и разрухи. Видимо, наши вожди дали указание купить у немцев (Веймарской Германии, с которой мы тесно и секретно сотрудничали в 20-е годы) чертежи наиболее совершенных подлодок кайзеровской Германии периода I мировой войны. Это было сделано – хоть об этом в музее и не пишут, затем наши ученые и конструкторы усовершенствовали некоторые узлы, а также разработали требования для выпуска комплектующих непосредственно в СССР. Правда, наиболее сложные части пришлось покупать за валюту у тех же немцев – первые 2 лодки серии имели дизели немецкой фирмы MAN (на "Декабристе" и "Народовольце"), а потом уж наладили их выпуск в Союзе. Сталь тогда еще тоже не варили нужную, просто не умели - для корпусных работ была выделена высококачественная сталь «из дореволюционных запасов» (так стыдливо и написано).
Но лодка была рабочая, и прошла всю войну, имея почти десяток боевых походов и 2 потопленных транспорта. Что для лодки постройки начала 30-х – очень неплохо и свидетельствует о запасе надежности и добротном проектировании.

Теперь мой взгляд на подлодку . Смотрите со мною вместе!

Вот общий вид лодки и вообще, всего музея, со льда ковша Галерной Гавани.

А это рубка с перископами и 102-мм орудие для стрельбы в надводном положении.

Теперь пошли внутрь.

Для начала - подлинный военно-морской вымпел этой лодки, хранится под стеклом, в нижней части центрального поста (ЦП).

Экскурсия начинается с кормы. Это кормовые торпедные аппараты (они были без запасных торпед, то есть выстрелить в походе из них можно было только 1 раз, без возможности перезарядки). Тут же – койки торпедистов, а также дифферентные цистерны, для всплытия.

Водонепроницаемая переборка между отсеками (при аварии и течи задраивалась наглухо), далее видны главные дизеля, для надводного хода, в этой лодке – немецкой фирмы MAN.

Идем дальше. Аккумуляторный отсек; тут же находятся масляные цистерны. Я постарался снять без вспышки, чтобы передать тот подлинный световой коктейль, который был при оригинальном освещении внутри лодки.

Снова межотсечная переборка. На ней прикреплена «Таблица перестукивания».

А это спустились вниз на уровень. Аккумуляторы для подводного хода (а для надводного применялись дизеля).

Управление дифферентными цистернами, которые отвечали за погружение и всплытие.

Управление различными магистралями (масляными, топливными и т.д.)

Вот дошли почти до Центрального поста (ЦП). Вид вверх. Это лестница в рубку, из прочного корпуса через комингс.

Место командира подводной лодки в небоевом режиме. Обратите внимание на дефицит места и компоновку основных управляющих приборов.

Это перископ (ПЗ-9). Он позволял полуавтоматически определять дистанцию до цели, курсовой угол цели для атаки, пеленг на цель, имел устройство "неподвижная нить в пространстве" для измерения скорости цели. Обладал достаточной светосилой для наблюдения в сумеречных и ночных условиях. Что удивительно, оптика функционирует и сейчас!

Вид на перископ снизу вверх. Это место командира подводной лодки в боевом режиме. Рядом виден штурвал для изменения курса лодки.

Это periskop.su у перископа (каламбур, однако…).

Крепление перископа внизу для точной фиксации выдвижного устройства.

gromozyaka ищет вражеские транспорта на ковше Галерной гавани. Эх, жаль, пока ничего нет! А то бы ка-а-а-к...

Рядом находится пост управления торпедной стрельбой. Можно переключить на «Пли!».

Штурвал. Управляет изменением курса лодки и ее маневрированием без изменения глубины погружения.

Самое комфортное место на подлодке. Слева – диван, справа – стол. Тут была кают-компания и рядом малюсенькие каюты для командного состава.

Лодочный гальюн. А что, подводникам тоже какать надо...

Проход в камбуз и кают-компанию.

Изолированная клетушка радиста.

Наконец, дошли до носового отсека, где помещались 6 торпедных аппаратов – главное оружие лодки. Тут же спали около 15 человек экипажа, внизу коек – столы для обеда, с зеленой поверхностью. Торпеды носовой группы можно было перезарядить, с боков тут же размещались запасные торпеды. Так что если сюда метко попасть глубинной бомбой – все взорвется к чертям собачьим...

periskop.su у торпедных аппаратов правой носовой группы. Верхний – заряжена торпеда, средний – пустой, нижний – закрыт в боевое положение. Максимальная дальность выстрела торпед составляла 54 кабельтовых (около 9 км) для скорости 31 узел.

Крышка торпедного аппарата номер 6.

Пустая шахта торпедного аппарата.

Погрузочная лебедка для перезарядки торпед.

Стволы торпедных аппаратов. Это самый нос подлодки, дальше нет хода.

Отсеки лодки:

I отсек (носовой): торпедные аппараты (6), запасные торпеды к ним (6), торпедно-заместительная и дифферентная цистерны, погрузочный люк.
II отсек: первая группа аккумуляторов и радиостанция.
III отсек: вторая и третья группы аккумуляторов, над ними жилые помещения командного состава. Здесь же - камбуз, кают-компания, а по бортам и под аккумуляторами - топливные цистерны.
IV отсек: центральный пост с главным командным пунктом. Здесь же находились уравнительная цистерна и цистерна быстрого погружения.
V отсек: четвёртая группа аккумуляторов и масляные цистерны. Над аккумуляторами - жилое помещение старшин.
VI отсек: дизельный.
VII отсек (кормовой): главные гребные электродвигатели, кормовые торпедные аппараты (2), торпедно-погрузочный люк и дифферентная цистерна.

И в заключение, кому интересно, технические характеристики подлодки:

Наибольшая длина - 76.6 м.
Ширина - 6.4 м.
Осадка - 3.64 м.
Надводное водоизмещение - 940 т.
Подводное водоизмещение - 1240 т.
Скорость полного хода над водой - 15.3 узлов.
Скорость полного хода под водой - 8.7 узлов.
Дальность плавания - 8950 миль.
Дальность плавания экономическим ходом - 158 миль.
Вооружение: 6 носовых торпедных аппаратов и 2 кормовых.
Глубина погружения - 90 м.
Экипаж - 53 человека.

Вот такая у нас в Питере есть интересная подлодка. Приходите:)

Продвинутая оптроника (оптоэлектроника) дает мачтовым системам непроникающего в корпус типа очевидное преимущество по сравнению с перископами прямого обзора . Вектор развития этой технологии в настоящее время определяется низкопрофильной оптроникой и новыми концепциями на основе неповоротных систем.

Интерес к оптоэлектронным перископам непроникающего в корпус типа возник в 80-х годах прошлого века. Разработчики утверждали, что эти системы повысят гибкость конструкции подлодки и ее безопасность. Эксплуатационные преимущества этих систем заключались в выводе изображения с перископа на несколько экранов экипажа в отличие от старых систем, когда только один человек мог использовать перископ, упрощении работы и повышении возможностей, включая функцию быстрого кругового обзора Quick Look Round (QLR), которая позволяла максимально сократить время нахождения перископа на поверхности и тем самым уменьшить уязвимость подлодки и, как следствие, вероятность обнаружения ее платформами противолодочной борьбы. Значение режима QLR в последнее время повышается вследствие всё большего использования подлодок для сбора информации.

Обычная противолодочная подводная лодка класса «Type 212A» немецкого флота демонстрирует свои мачты. Эти дизель-электрические подлодки классов «Type 212A» и «Todaro», поставляемые соответственно немецкому и итальянскому флоту, отличаются комбинацией мачт и проникающего (SERO-400) и непроникающего типов (OMS-110)

Помимо повышения гибкости конструкции субмарины за счет разнесения в пространстве поста управления и оптронных мачт, это позволяет улучшить его эргономику за счет освобождения объема, ранее занятого перископами.

Мачты непроникающего типа в корпус типа также могут относительно просто реконфигурироваться за счет установки новых систем и реализации новых возможностей, они имеют меньше движущихся частей, что уменьшает стоимость жизненного цикла перископа и соответственно объем его обслуживания, текущего и капитального ремонта. Непрерывный технологический прогресс способствует снижению вероятности обнаружения перископа, а дальнейшие усовершенствования в этой сфере связаны с переходом на низкопрофильные оптронные мачты.

Класс «Virginia»

В начале 2015 года ВМС США установили новый малозаметный перископ, базирующийся на низкопрофильной оптронной мачте LPPM (Low-Profle Photonics Mast) Block 4 компании L-3 Communications, на свои атомные подводные лодки класса «Virginia». С целью уменьшения вероятности обнаружения эта фирма работает также над утоненным вариантом нынешней оптронной мачты AN/BVS-1 Kollmorgen (в настоящее время компания L-3 KEO ), установленной на подлодки этого же класса.

Компания L-3 Communications объявила в мае 2015 года о том, что ее подразделение оптико-электронных систем L-3 KEO (в феврале 2012 года L-3 Communications присоединила компанию KEO, что привело к созданию L-3 KEO) получило по итогам конкурса контракт стоимостью 48,7 миллиона долларов от Командования военно-морских систем ВМС США (NAVSEA) на разработку и проектирование низкопрофильной мачты с опционом на производство 29 оптронных мачт в течение четырех лет, а также техническое обслуживание.

Программой по мачте LPPM предусматривается сохранение характеристик нынешнего перископа при одновременном уменьшении его размеров до размеров более традиционных перископов, например перископа Kollmorgen Type-18, который начал устанавливаться с 1976 года на атомные подлодки класса «Los Angeles» по мере вхождения их в состав флота.

Компания L-3 KEO поставляет американскому флоту универсальную модульную мачту Universal Modular Mast (UMM), которая служит в качестве подъемного механизма для пяти различных сенсоров, включая оптронную мачту AN/BVS1 , мачту высокоскоростной передачи данных, многофункциональные мачты и встроенные системы радиоэлектронного обеспечения

Многоцелевая атомная подводная лодка Missouri класса «Virginia» с двумя оптронными мачтами L-3 KEO AN/ BVS-1. Этот класс атомных подлодок стал первым, где были установлены только оптронные мачты (командирские и наблюдения) непроникающего в корпус типа

Хотя мачта AN/BVS-1 имеет уникальные характеристики, но она слишком большая и ее форма уникальна для ВМС США, что позволяет немедленно идентифицировать национальность этой субмарины при обнаружении перископа. Судя по общедоступной информации, мачта LPPM имеет такой же диаметр как у перископа Type-18, а ее внешний вид напоминает стандартную форму этого перископа. Модульная мачта LPPM непроникающего в корпус типа устанавливается в универсальный телескопический модульный отсек, что повышает незаметность и живучесть подводных лодок.

К особенностям системы относятся визуализация в коротковолновой инфракрасной области спектра, визуализация высокого разрешения в видимой области спектра, лазерная дальнометрия и комплект антенн, обеспечивающих широкое покрытие электромагнитного спектра. Прототип оптронной мачты LPPM L-3 KEO на сегодняшний день является единственным эксплуатируемым образцом; он установлен борту подводной лодки Texas класса «Virginia», где проверяются все подсистемы и эксплуатационная готовность новой системы.

Первая серийная мачта будет изготовлена в 2017 году, а ее установка начнется в 2018 году. По данным компании L-3 KEO, она планирует разработать свою LPPM так, чтобы NAVSEA могло устанавливать единую мачту на новые подлодки, а также могло модернизировать существующие суда в рамках постоянной программы совершенствования, направленной на повышение надежности, возможностей и ценовой доступности. Экспортный вариант мачты AN/BVS-1, известный под обозначением Model 86, впервые был продан зарубежному заказчику по контракту, объявленному в 2000 году, когда египетский флот задумал большую модернизацию своих четырех дизель-электрических противолодочных субмарин класса «Romeo» . Еще один неназванный заказчик из Европы также установил Model 86 на свои дизель-электрические подводные лодки (ДЭПЛ).


Перископные системы до установки на подводную лодку

Компания L-3 KEO наряду с разработкой LPPM уже поставляет ВМС США универсальную модульную мачту Universal Modular Mast (UMM). Эта непроникающего типа мачта устанавливается на подлодках класса «Virginia». UMM служит в качестве подъемного механизма для пяти различных сенсорных систем, включая AN/BVS-1, радиомачту OE-538, антенну для высокоскоростной передачи данных, мачту для специальных задач, а также мачту с интегрированными антеннами радиоэлектронного обеспечения. KEO получила контракт от министерства обороны США на разработку мачты UMM в 1995 году. В апреле 2014 года компания L-3 KEO получила контракт стоимостью 15 миллионов долларов на поставку 16 мачт UMM для установки на несколько атомных подлодок класса «Virginia».

Изображения с оптико-электронной мачты L-3 KEO AN/BVS-1 выводится на рабочее место оператора. Мачты непроникающего типа улучшают эргономику центрального поста, а также повышают безопасность за счет конструктивной целостности корпуса

Другим заказчиком UMM выступает итальянский флот, который также оборудовал этой мачтой свои дизель-электрические подлодки класса «Todaro» первой и второй партии; последние две лодки должны были быть поставлены по графику соответственно в 2015 и 2016 годы. L-3 KEO также владеет выпускающей перископы итальянской компанией Calzoni, которая разработала электронную мачту E-UMM (Electronic UMM) с электрическим приводом, что позволило уйти от внешней гидравлической системы подъема и опускания перископа.

Последнее предложение компании L-3 KEO – это командирская оптронная система непроникающего типа AOS (Attack Optronic System). В этой низкопрофильной мачте совмещены характеристики традиционного поискового перископа Model 76IR и оптронной мачты Model 86 этой же компании (см. выше). Мачта имеет сниженные визуальные и радиолокационные сигнатуры, массу 453 кг, диаметр сенсорной головки составляет всего 190 мм. В сенсорный комплект мачты AOS входят лазерный дальномер, тепловизор, телекамера высокого разрешения и телекамера для низких уровней освещенности.

OMS-110

В первой половине 90-х годов немецкая компания Carl Zeiss (в настоящее время Airbus Defence and Space) начала предварительную разработку своей оптронной мачты Optronic Mast System (OMS). Первым заказчиком серийного варианта мачты, получившего обозначение OMS-110, стал флот ЮАР, выбравший эту систему для трех своих ДЭПЛ класса «Heroine», которые были поставленных в 2005-2008 годы. Греческий флот также выбрал мачту OMS-110 для своих ДЭПЛ «Papanikolis», а вслед за ним купить эту мачту решила Южная Корея для своих ДЭПЛ класса «Chang Bogo».

Мачты непроникающего в корпус типа OMS-110 также были установлены на подлодки индийского флота класса «Shishumar» и традиционные противолодочные субмарины класса «Tridente» португальского флота. Одним из последних приложений OMS-110 стала установка универсальных мачт UMM (см. выше) на подлодки итальянского флота «Todaro» и противолодочные подлодки немецкого флота класса «Type 2122». Эти лодки будут иметь комбинацию оптронной мачты OMS-110 и командирского перископа SERO 400 (проникающего в корпус типа) от компании Airbus Defence and Space.

Оптронная мачта OMS-110 имеет стабилизацию линии визирования по двум осям, средневолновую тепловизионную камеру третьего поколения, телекамеру высокого разрешения и опциональный безопасный для глаз лазерный дальномер. Режим быстрого кругового обзора позволяет получить быстрый программируемый панорамный обзор на 360 градусов. По сообщениям, он может быть выполнен системой OMS-110 менее чем за три секунды.

Компания Airbus Defence and Security разработала низкопрофильную оптронную мачту OMS-200, либо как дополнение к OMS-110, либо как отдельное решение. Эта мачта, показанная на выставке Defence Security and Equipment International 2013 в Лондоне, отличается улучшенной стелс-технологией а также компактной конструкцией. Модульная, компактная, низкопрофильная, не проникающего типа командирская/поисковая оптронная мачта OMS-200 объединяет различные сенсоры в едином корпусе с радиопоглощающим покрытием. В качестве «замены» традиционного перископа прямого обзора система OMS-200 специально спроектирована так, чтобы сохранить малозаметность в видимом, инфракрасном и радиолокационном спектрах.

Оптронная мачта OMS-200 объединяет три сенсора, телекамеру высокой четкости, коротковолновой тепловизор и безопасный для глаз лазерный дальномер. Изображение с высоким качеством и высоким разрешением с коротковолнового тепловизора может дополняться изображением со средневолнового тепловизора, особенно в условиях плохой видимости, например тумана или дымки. По данным компании, система OMS-200 может совмещать изображения в одну картинку с превосходной стабилизацией.

Series 30

На парижской выставке Euronaval 2014 компания Sagem объявила о том, что она выбрана южнокорейской судостроительной верфью Daewoo Shipbuilding and Marine Engineering (DSME) для поставки оптронных мачт непроникающего типа для оборудования новых южнокорейских ДЭПЛ класса «Son-Won-II», по которым DSME является головным подрядчиком. Этот контракт ознаменовал собой экспортный успех новейшего семейства оптронных мачт Search Optronic Mast (SOM) Series 30 разработки компании Sagem.

Эта поисковая оптронная мачта не проникающего в корпус типа одновременно может принять более четырех продвинутых оптико-электронных каналов и полный набор антенн радиоэлектронной борьбы и системы Global Positioning System (GPS); всё размещается в легком сенсорном контейнере. Оптронные сенсоры мачты Series 30 SOM включают тепловизор высокого разрешения, телекамеру высокого разрешения, телекамеру для низких уровней освещенности и безопасный для глаз лазерный дальномер.

Мачта может принять антенну GPS, антенну радиоэлектронного обеспечения раннего предупреждения, радиопеленгаторную антенну радиоэлектронного обеспечения и антенну связи. Среди рабочих режимов системы имеется режим быстрого кругового обзора, при этом одновременно доступны все каналы. Двухэкранные цифровые дисплеи имеют интуитивный графический интерфейс.

Компания Sagem разработала и начала производство семейства командирских и поисковых мачт Series 30, которые заказаны многими флотами, в том числе и французским. Командирская мачта при этом имеет низкий визуальный профиль

ДЭПЛ класса «Scorpene» постройки компании DCNS оборудованы комбинацией мачт проникающего и непроникающего типа от компании Sagem, включая мачту серии Series 30 с четырьмя оптронными сенсорами: телекамерой высокого разрешения, тепловизором, телекамерой для низкого освещения и лазерным дальномером

Компания Sagem уже поставила вариант Series 30 SOM для новых ДЭПЛ класса «Barracuda» французского флота, тогда как еще один вариант был продан пока неназванному зарубежному заказчику. По данным Sagem, мачта Series 30 SOM поставляемая южнокорейскому флоту, будет включать также антенну радиотехнической разведки, а также оптические средства связи, работающие в инфракрасном диапазоне.

Также доступен командирский вариант Series 30 SOM, получивший обозначение Series 30 AOM; он отличается низкопрофильной мачтой и полностью совместим с вариантом Series 30 SOM касательно механических, электронных и программных интерфейсов. Один и тот же контейнер и кабели могут быть использованы для обоих сенсорных блоков, что позволяет флотам выбирать оптимальную конфигурацию для специфических задач. Базовый набор включает тепловизор высокого разрешения, телекамеру высокого разрешения, опционально идут безопасный для глаз лазерный дальномер, коротковолновый тепловизор и дневная/ночная резервная камера.

CM010

Начало родословной компании Pilkington Optronics датируется 1917 годом, когда ее предшественник стал единственным поставщиком британского флота. В свое время эта фирма (теперь в составе компании Tales) начала в инициативном порядке разработку семейства оптронных мачт CM010, установив опытный образец в 1996 году на атомную подлодку «Trafalgar» британского флота, после чего в 2000 году была выбрана компанией BAE Systems для оборудования новых атомных подлодок класса «Astute». Сдвоенная оптронная мачта CM010 была установлена на первые три лодки. Компания Tales впоследствии получила контракты на оборудование оставшихся четырех подлодок этого класса мачтами CM010 в сдвоенной конфигурации.

Компания Thales оборудовала все субмарины класса «Astute» британского флота оптронными мачтами с сенсорными головками CM010 и CM011. Эти изделия представляют собой основу для перспективных перископов новой серии

Мачта CM010 включает телекамеру высокого разрешения и тепловизор, тогда как в модели CM011 установлены телекамера высокого разрешения и камера с усилением яркости изображения с целью ведения подводного наблюдения, чего не обеспечивает традиционный тепловизор.

В соответствии с контрактом, полученным в 2004 году, компания Tales в мае 2007 года начала поставку мачт CM010 японской компании Mitsubishi Electric Corporation для установки на новые японские ДЭПЛ «Soryu». Компания Tales в настоящее время разрабатывает низкопрофильный вариант CM010 с такой же функциональностью, а также сенсорный комплект, состоящий из камеры высокого разрешения, тепловизора и телекамеры для низких уровней освещенности (или дальномера). Этот сенсорный комплект предполагается использовать для особых задач или ДЭПЛ меньших размерений.

Низкопрофильный вариант ULPV (Ultra-Low Profle Variant), предназначенный для установки на платформы высокого технологического уровня, представляет собой блок из двух сенсоров (телекамера высокой чёткости плюс тепловизор или камера для низких уровней освещения), установленный в низкопрофильной сенсорной головке. Его визуальная сигнатура схожа с сигнатурой командирского перископа диаметром до 90 мм, но при этом система стабилизирована и имеет средства радиоэлектронной поддержки.

Японская ДЭПЛ «Hakuryu», принадлежащая к классу «Soryu», оборудуется мачтой CM010 компании Thales. Мачты поставлены на верфь компании Mitsubishi, основного подрядчика подлодок класса «Soryu», для установки на борт этих субмарин

Панорамная мачта

ВМС США, являющиеся самым крупным оператором современных подводных лодок, развивают перископную технологию в рамках своей программы по модульной панорамной оптронной мачте Afordable Modular Panoramic Photonics Mast (AMPPM). Программа AMPPM начата в 2009 году, и как определили в научно-исследовательском Управлении ВМС, которое курирует эту программу, ее целью является «разработка новой сенсорной мачты для подводных лодок, имеющей высококачественные сенсоры для панорамного поиска в видимом и инфракрасном спектрах, а также коротковолновые инфракрасные и гиперспектральные сенсоры для дальнего обнаружения и идентификации».

По данным Управления, программа AMPPM должна существенно снизить стоимость производства и обслуживания за счет модульной конструкции и неповоротной опоры. Кроме того, ожидается значительное повышение уровня эксплуатационной готовности по сравнению с нынешними оптронными мачтами.

В июне 2011 года прототип мачты, разработанный компанией Panavision, был выбран Управлением для реализации программы AMPPM. Вначале пройдут, по меньшей мере, двухлетние испытания на суше. Затем последуют испытания на море, которые по графику начнутся в 2018 году. Новые неповоротные мачты AMPPM с круговым обзором на 360 градусов будут устанавливаться на атомные подлодки класса «Virginia».

Компания L-3 KEO поставляет американскому флоту универсальную модульную мачту Universal Modular Mast (UMM), которая служит в качестве подъемного механизма для пяти различных сенсоров, включая оптронную мачту AN/BVS1 , мачту высокоскоростной передачи данных, многофункциональные мачты и встроенные системы радиоэлектронного обеспечения



Многоцелевая атомная подводная лодка Missouri класса «Virginia» с двумя оптронными мачтами L-3 KEO AN/ BVS-1. Этот класс атомных подлодок стал первым, где были установлены только оптронные мачты (командирские и наблюдения) непроникающего в корпус типа

Продвинутая оптроника (оптоэлектроника) дает мачтовым системам непроникающего в корпус типа очевидное преимущество по сравнению с перископами прямого обзора. Вектор развития этой технологии в настоящее время определяется низкопрофильной оптроникой и новыми концепциями на основе неповоротных систем.

Интерес к оптоэлектронным перископам непроникающего в корпус типа возник в 80-х годах прошлого века. Разработчики утверждали, что эти системы повысят гибкость конструкции подлодки и ее безопасность. Эксплуатационные преимущества этих систем заключались в выводе изображения с перископа на несколько экранов экипажа в отличие от старых систем, когда только один человек мог использовать перископ, упрощении работы и повышении возможностей, включая функцию быстрого кругового обзора Quick Look Round (QLR), которая позволяла максимально сократить время нахождения перископа на поверхности и тем самым уменьшить уязвимость подлодки и, как следствие, вероятность обнаружения ее платформами противолодочной борьбы. Значение режима QLR в последнее время повышается вследствие всё большего использования подлодок для сбора информации.

Помимо повышения гибкости конструкции субмарины за счет разнесения в пространстве поста управления и оптронных мачт, это позволяет улучшить его эргономику за счет освобождения объема, ранее занятого перископами. Мачты непроникающего типа в корпус типа также могут относительно просто реконфигурироваться за счет установки новых систем и реализации новых возможностей, они имеют меньше движущихся частей, что уменьшает стоимость жизненного цикла перископа и соответственно объем его обслуживания, текущего и капитального ремонта. Непрерывный технологический прогресс способствует снижению вероятности обнаружения перископа, а дальнейшие усовершенствования в этой сфере связаны с переходом на низкопрофильные оптронные мачты.


Обычная противолодочная подводная лодка класса «Type 212A» немецкого флота демонстрирует свои мачты. Эти дизель-электрические подлодки классов «Type 212A» и «Todaro», поставляемые соответственно немецкому и итальянскому флоту, отличаются комбинацией мачт и проникающего (SERO-400) и непроникающего типов (OMS-110)

Класс «Virginia»

В начале 2015 года ВМС США установили новый малозаметный перископ, базирующийся на низкопрофильной оптронной мачте LPPM (Low-Profle Photonics Mast) Block 4 компании L-3 Communications, на свои атомные подводные лодки класса «Virginia». С целью уменьшения вероятности обнаружения эта фирма работает также над утоненным вариантом нынешней оптронной мачты AN/BVS-1 Kollmorgen (в настоящее время компания L-3 KEO ), установленной на подлодки этого же класса.

Компания L-3 Communications объявила в мае 2015 года о том, что ее подразделение оптико-электронных систем L-3 KEO (в феврале 2012 года L-3 Communications присоединила компанию KEO, что привело к созданию L-3 KEO) получило по итогам конкурса контракт стоимостью 48,7 миллиона долларов от Командования военно-морских систем ВМС США (NAVSEA) на разработку и проектирование низкопрофильной мачты с опционом на производство 29 оптронных мачт в течение четырех лет, а также техническое обслуживание. Программой по мачте LPPM предусматривается сохранение характеристик нынешнего перископа при одновременном уменьшении его размеров до размеров более традиционных перископов, например перископа Kollmorgen Type-18, который начал устанавливаться с 1976 года на атомные подлодки класса «Los Angeles» по мере вхождения их в состав флота.

Хотя мачта AN/BVS-1 имеет уникальные характеристики, но она слишком большая и ее форма уникальна для ВМС США, что позволяет немедленно идентифицировать национальность этой субмарины при обнаружении перископа. Судя по общедоступной информации, мачта LPPM имеет такой же диаметр как у перископа Type-18, а ее внешний вид напоминает стандартную форму этого перископа. Модульная мачта LPPM непроникающего в корпус типа устанавливается в универсальный телескопический модульный отсек, что повышает незаметность и живучесть подводных лодок.

К особенностям системы относятся визуализация в коротковолновой инфракрасной области спектра, визуализация высокого разрешения в видимой области спектра, лазерная дальнометрия и комплект антенн, обеспечивающих широкое покрытие электромагнитного спектра. Прототип оптронной мачты LPPM L-3 KEO на сегодняшний день является единственным эксплуатируемым образцом; он установлен борту подводной лодки Texas класса «Virginia», где проверяются все подсистемы и эксплуатационная готовность новой системы. Первая серийная мачта будет изготовлена в 2017 году, а ее установка начнется в 2018 году. По данным компании L-3 KEO, она планирует разработать свою LPPM так, чтобы NAVSEA могло устанавливать единую мачту на новые подлодки, а также могло модернизировать существующие суда в рамках постоянной программы совершенствования, направленной на повышение надежности, возможностей и ценовой доступности. Экспортный вариант мачты AN/BVS-1, известный под обозначением Model 86, впервые был продан зарубежному заказчику по контракту, объявленному в 2000 году, когда египетский флот задумал большую модернизацию своих четырех дизель-электрических противолодочных субмарин класса «Romeo» . Еще один неназванный заказчик из Европы также установил Model 86 на свои дизель-электрические подводные лодки (ДЭПЛ).




Перископные системы до установки на подводную лодку

Компания L-3 KEO наряду с разработкой LPPM уже поставляет ВМС США универсальную модульную мачту Universal Modular Mast (UMM). Эта непроникающего типа мачта устанавливается на подлодках класса «Virginia». UMM служит в качестве подъемного механизма для пяти различных сенсорных систем, включая AN/BVS-1, радиомачту OE-538, антенну для высокоскоростной передачи данных, мачту для специальных задач, а также мачту с интегрированными антеннами радиоэлектронного обеспечения. KEO получила контракт от министерства обороны США на разработку мачты UMM в 1995 году. В апреле 2014 года компания L-3 KEO получила контракт стоимостью 15 миллионов долларов на поставку 16 мачт UMM для установки на несколько атомных подлодок класса «Virginia».

Другим заказчиком UMM выступает итальянский флот, который также оборудовал этой мачтой свои дизель-электрические подлодки класса «Todaro» первой и второй партии; последние две лодки должны были быть поставлены по графику соответственно в 2015 и 2016 годы. L-3 KEO также владеет выпускающей перископы итальянской компанией Calzoni, которая разработала электронную мачту E-UMM (Electronic UMM) с электрическим приводом, что позволило уйти от внешней гидравлической системы подъема и опускания перископа.

Последнее предложение компании L-3 KEO – это командирская оптронная система непроникающего типа AOS (Attack Optronic System). В этой низкопрофильной мачте совмещены характеристики традиционного поискового перископа Model 76IR и оптронной мачты Model 86 этой же компании (см. выше). Мачта имеет сниженные визуальные и радиолокационные сигнатуры, массу 453 кг, диаметр сенсорной головки составляет всего 190 мм. В сенсорный комплект мачты AOS входят лазерный дальномер, тепловизор, телекамера высокого разрешения и телекамера для низких уровней освещенности.


Изображения с оптико-электронной мачты L-3 KEO AN/BVS-1 выводится на рабочее место оператора. Мачты непроникающего типа улучшают эргономику центрального поста, а также повышают безопасность за счет конструктивной целостности корпуса

В первой половине 90-х годов немецкая компания Carl Zeiss (в настоящее время Airbus Defence and Space) начала предварительную разработку своей оптронной мачты Optronic Mast System (OMS). Первым заказчиком серийного варианта мачты, получившего обозначение OMS-110, стал флот ЮАР, выбравший эту систему для трех своих ДЭПЛ класса «Heroine», которые были поставленных в 2005-2008 годы. Греческий флот также выбрал мачту OMS-110 для своих ДЭПЛ «Papanikolis», а вслед за ним купить эту мачту решила Южная Корея для своих ДЭПЛ класса «Chang Bogo». Мачты непроникающего в корпус типа OMS-110 также были установлены на подлодки индийского флота класса «Shishumar» и традиционные противолодочные субмарины класса «Tridente» португальского флота. Одним из последних приложений OMS-110 стала установка универсальных мачт UMM (см. выше) на подлодки итальянского флота «Todaro» и противолодочные подлодки немецкого флота класса «Type 2122». Эти лодки будут иметь комбинацию оптронной мачты OMS-110 и командирского перископа SERO 400 (проникающего в корпус типа) от компании Airbus Defence and Space. Оптронная мачта OMS-110 имеет стабилизацию линии визирования по двум осям, средневолновую тепловизионную камеру третьего поколения, телекамеру высокого разрешения и опциональный безопасный для глаз лазерный дальномер. Режим быстрого кругового обзора позволяет получить быстрый программируемый панорамный обзор на 360 градусов. По сообщениям, он может быть выполнен системой OMS-110 менее чем за три секунды.

Компания Airbus Defence and Security разработала низкопрофильную оптронную мачту OMS-200, либо как дополнение к OMS-110, либо как отдельное решение. Эта мачта, показанная на выставке Defence Security and Equipment International 2013 в Лондоне, отличается улучшенной стелс-технологией а также компактной конструкцией. Модульная, компактная, низкопрофильная, не проникающего типа командирская/поисковая оптронная мачта OMS-200 объединяет различные сенсоры в едином корпусе с радиопоглощающим покрытием. В качестве «замены» традиционного перископа прямого обзора система OMS-200 специально спроектирована так, чтобы сохранить малозаметность в видимом, инфракрасном и радиолокационном спектрах. Оптронная мачта OMS-200 объединяет три сенсора, телекамеру высокой четкости, коротковолновой тепловизор и безопасный для глаз лазерный дальномер. Изображение с высоким качеством и высоким разрешением с коротковолнового тепловизора может дополняться изображением со средневолнового тепловизора, особенно в условиях плохой видимости, например тумана или дымки. По данным компании, система OMS-200 может совмещать изображения в одну картинку с превосходной стабилизацией.


Компания Sagem разработала и начала производство семейства командирских и поисковых мачт Series 30, которые заказаны многими флотами, в том числе и французским. Командирская мачта при этом имеет низкий визуальный профиль


ДЭПЛ класса «Scorpene» постройки компании DCNS оборудованы комбинацией мачт проникающего и непроникающего типа от компании Sagem, включая мачту серии Series 30 с четырьмя оптронными сенсорами: телекамерой высокого разрешения, тепловизором, телекамерой для низкого освещения и лазерным дальномером

SERIES 30

На парижской выставке Euronaval 2014 компания Sagem объявила о том, что она выбрана южнокорейской судостроительной верфью Daewoo Shipbuilding and Marine Engineering (DSME) для поставки оптронных мачт непроникающего типа для оборудования новых южнокорейских ДЭПЛ класса «Son-Won-II», по которым DSME является головным подрядчиком. Этот контракт ознаменовал собой экспортный успех новейшего семейства оптронных мачт Search Optronic Mast (SOM) Series 30 разработки компании Sagem. Эта поисковая оптронная мачта не проникающего в корпус типа одновременно может принять более четырех продвинутых оптико-электронных каналов и полный набор антенн радиоэлектронной борьбы и системы Global Positioning System (GPS); всё размещается в легком сенсорном контейнере. Оптронные сенсоры мачты Series 30 SOM включают тепловизор высокого разрешения, телекамеру высокого разрешения, телекамеру для низких уровней освещенности и безопасный для глаз лазерный дальномер. Мачта может принять антенну GPS, антенну радиоэлектронного обеспечения раннего предупреждения, радиопеленгаторную антенну радиоэлектронного обеспечения и антенну связи. Среди рабочих режимов системы имеется режим быстрого кругового обзора, при этом одновременно доступны все каналы. Двухэкранные цифровые дисплеи имеют интуитивный графический интерфейс.

Компания Sagem уже поставила вариант Series 30 SOM для новых ДЭПЛ класса «Barracuda» французского флота, тогда как еще один вариант был продан пока неназванному зарубежному заказчику. По данным Sagem, мачта Series 30 SOM поставляемая южнокорейскому флоту, будет включать также антенну радиотехнической разведки, а также оптические средства связи, работающие в инфракрасном диапазоне. Также доступен командирский вариант Series 30 SOM, получивший обозначение Series 30 AOM; он отличается низкопрофильной мачтой и полностью совместим с вариантом Series 30 SOM касательно механических, электронных и программных интерфейсов. Один и тот же контейнер и кабели могут быть использованы для обоих сенсорных блоков, что позволяет флотам выбирать оптимальную конфигурацию для специфических задач. Базовый набор включает тепловизор высокого разрешения, телекамеру высокого разрешения, опционально идут безопасный для глаз лазерный дальномер, коротковолновый тепловизор и дневная/ночная резервная камера.


Компания Thales оборудовала все субмарины класса «Astute» британского флота оптронными мачтами с сенсорными головками CM010 и CM011. Эти изделия представляют собой основу для перспективных перископов новой серии

Начало родословной компании Pilkington Optronics датируется 1917 годом, когда ее предшественник стал единственным поставщиком британского флота. В свое время эта фирма (теперь в составе компании Tales) начала в инициативном порядке разработку семейства оптронных мачт CM010, установив опытный образец в 1996 году на атомную подлодку «Trafalgar» британского флота, после чего в 2000 году была выбрана компанией BAE Systems для оборудования новых атомных подлодок класса «Astute». Сдвоенная оптронная мачта CM010 была установлена на первые три лодки. Компания Tales впоследствии получила контракты на оборудование оставшихся четырех подлодок этого класса мачтами CM010 в сдвоенной конфигурации.

Мачта CM010 включает телекамеру высокого разрешения и тепловизор, тогда как в модели CM011 установлены телекамера высокого разрешения и камера с усилением яркости изображения с целью ведения подводного наблюдения, чего не обеспечивает традиционный тепловизор. В соответствии с контрактом, полученным в 2004 году, компания Tales в мае 2007 года начала поставку мачт CM010 японской компании Mitsubishi Electric Corporation для установки на новые японские ДЭПЛ «‘Soryu». Компания Tales в настоящее время разрабатывает низкопрофильный вариант CM010 с такой же функциональностью, а также сенсорный комплект, состоящий из камеры высокого разрешения, тепловизора и телекамеры для низких уровней освещенности (или дальномера). Этот сенсорный комплект предполагается использовать для особых задач или ДЭПЛ меньших размерений. Низкопрофильный вариант ULPV (Ultra-Low Profle Variant), предназначенный для установки на платформы высокого технологического уровня, представляет собой блок из двух сенсоров (телекамера высокой чёткости плюс тепловизор или камера для низких уровней освещения), установленный в низкопрофильной сенсорной головке. Его визуальная сигнатура схожа с сигнатурой командирского перископа диаметром до 90 мм, но при этом система стабилизирована и имеет средства радиоэлектронной поддержки.


Японская ДЭПЛ «Hakuryu», принадлежащая к классу «Soryu», оборудуется мачтой CM010 компании Thales. Мачты поставлены на верфь компании Mitsubishi, основного подрядчика подлодок класса «Soryu», для установки на борт этих субмарин

Панорамная мачта

ВМС США, являющиеся самым крупным оператором современных подводных лодок, развивают перископную технологию в рамках своей программы по модульной панорамной оптронной мачте Afordable Modular Panoramic Photonics Mast (AMPPM). Программа AMPPM начата в 2009 году, и как определили в научно-исследовательском Управлении ВМС, которое курирует эту программу, ее целью является «разработка новой сенсорной мачты для подводных лодок, имеющей высококачественные сенсоры для панорамного поиска в видимом и инфракрасном спектрах, а также коротковолновые инфракрасные и гиперспектральные сенсоры для дальнего обнаружения и идентификации». По данным Управления, программа AMPPM должна существенно снизить стоимость производства и обслуживания за счет модульной конструкции и неповоротной опоры. Кроме того, ожидается значительное повышение уровня эксплуатационной готовности по сравнению с нынешними оптронными мачтами. В июне 2011 года прототип мачты, разработанный компанией Panavision, был выбран Управлением для реализации программы AMPPM. Вначале пройдут, по меньшей мере, двухлетние испытания на суше. Затем последуют испытания на море, которые по графику начнутся в 2018 году. Новые неповоротные мачты AMPPM с круговым обзором на 360 градусов будут устанавливаться на атомные подлодки класса «Virginia».

Использованы материалы:
www2.l-3com.com
www.airbusdefenceandspace.com
www.sagem.com
www.thalesgroup.com
www.navsea.navy.mil
www.wikipedia.org
ru.wikipedia.org